Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Regimes of Premixed Turbulent Combustion and Misfire Modeling in SI Engines

1998-10-19
982611
A review of flame kernel growth in SI engines and the regimes of premixed turbulent combustion showed that a misfire model based on regimes of premixed turbulent combustion was warranted[1]. The present study will further validate the misfire model and show that it has captured the dominating physics and avoided extremely complex, yet inefficient, models. Results showed that regimes of turbulent combustion could, indeed, be used for a concept-simple model to predict misfire limits in SI engines. Just as importantly, the entire regimes of premixed turbulent combustion in SI engines were also mapped out with the model.
Technical Paper

Intra-Parcel Collision Model for Diesel Spray Simulations

2008-10-06
2008-01-2426
Multidimensional models that are used for engine computations must include spray sub-models when the fuel is injected into the cylinder in liquid form. One of these spray sub-models is the droplet interaction model, which is separated into two parts: first, calculation of a collision rate between drops, and second, calculation of the outcome once a collision has occurred. This paper focuses on the problem of calculating the collision rate between drops accurately. Computing the collision rate between drops or particles when they are non-uniformly distributed and sharp gradients are present in their distribution is a challenging task. Traditionally the collisions between parcels of drops have been computed using the same spatial grid as is used for the Eulerian gas-phase calculations. Recently it has been proposed to use a secondary grid for the collision rate calculation that is independent of the gas-phase grid, as is done in the NTC collision algorithm.
Technical Paper

Modeling Water Condensation in Exhaust A/T Devices

2010-04-12
2010-01-0885
Ignoring the impact of water condensation leads to incorrect temperature simulation during cold start, and this can lead to questions being raised about the overall accuracy of aftertreatment simulation tools for both temperature and emission predictions. This report provides a mathematical model to simulate the condensation and evaporation of water in exhaust after-treatment devices. The simulation results are compared with experimental data. Simulation results show that the temperature profiles obtained using the condensation model are more accurate than the profiles obtained without using the condensation model. The model will be very useful in addressing questions that concern the accuracy of the simulation tool during cold-start and heating up of catalysts, which accounts for the conditions where tailpipe emission issues are most significant.
Technical Paper

Methods for Modeling and Code Generation for Custom Lookup Tables

2010-04-12
2010-01-0941
Lookup tables and functions are widely used in real-time embedded automotive applications to conserve scarce processor resources. To minimize the resource utilization, these lookup tables (LUTs) commonly use custom data structures. The lookup function code is optimized to process these custom data structures. The legacy routines for these lookup functions are very efficient and have been in production for many years. These lookup functions and the corresponding data structures are typically used for calibration tables. The third-party calibration tools are specifically tailored to support these custom data structures. These tools assist the calibrators in optimizing the control algorithm performance for the targeted environment for production. Application software typically contains a mix of both automatically generated software and manually developed code. Some of the same calibration tables may be used in both auto generated and hand-code [ 1 ] [ 2 ].
Technical Paper

Communication between Plug-in Vehicles and the Utility Grid

2010-04-12
2010-01-0837
This paper is the first in a series of documents designed to record the progress of the SAE J2293 Task Force as it continues to develop and refine the communication requirements between Plug-In Electric Vehicles (PEV) and the Electric Utility Grid. In February, 2008 the SAE Task Force was formed and it started by reviewing the existing SAE J2293 standard, which was originally developed by the Electric Vehicle (EV) Charging Controls Task Force in the 1990s. This legacy standard identified the communication requirements between the Electric Vehicle (EV) and the EV Supply Equipment (EVSE), including off-board charging systems necessary to transfer DC energy to the vehicle. It was apparent at the first Task Force meeting that the communications requirements between the PEV and utility grid being proposed by industry stakeholders were vastly different in the type of communications and messaging documented in the original standard.
Technical Paper

Influence of ride frequency balance in sub limit vehicle stability

2010-10-06
2010-36-0250
Current road vehicles have tendency of use softer suspension springs to improve ride comfort, but as a moving device with suspension system, vehicles have other parts that can affect attributes for comfort perception, and is necessary the correct definition of which one should be modified to address the comfort issue and avoid impact in attributes for stability. Usually springs are not the main responsible for bad comfort behavior, but shock absorbers and bushings are. A typical passenger car shows a wide possibility of loads carriage and how to set up correctly the suspensions considering its tradeoffs and brand DNA is the main issue.
Technical Paper

Engine Reliability Through Infant Mortality Mitigation: Literature Review

2010-10-06
2010-36-0049
Internal combustion engines are designed to meet the high power, low fuel consumption and also, low exhaust emissions. The engine running conditions is valid the concept that, the expectative is very high because of the variety of operating conditions like cold start, frequent start and stop, time high speed and load, traditional gasoline, mix of gasoline and alcohol and finally, alcohol fuel only. Considering such demand, this paper explains the relationship between the reliability bathtub curve, specifically the "Infant Mortality" portion. The bathtub curve describes failure rate as a function of time. The "Infant Mortality" portion of the curve is the initial section for which the failure (death) rate decreases with time (age). In general, these problems are related to manufacturing aspects or poor design definitions. With development of technology, hard failures, the ones that cause dependability, are becoming rare.
Technical Paper

Constant Q Transform for Automotive NVH Signal Analysis

2010-10-06
2010-36-0373
The constant Q transform consists of a geometrically spaced filter bank, which is close to the wavelet transform due to the feature of its increasing time resolution for high frequencies. On the other hand, it can be processed using the well-known FFT algorithm. In this sense, this tool is a middle term between Fourier and wavelet analyses, which can be used for stationary and non-stationary signals. Automotive NVH signals can be stationary (e.g., idle, cruise) or non-stationary, i.e., time-varying signals (e.g., door closing/opening, run-up, rundown). The objective of this work is to propose the use of the constant Q transform, developed originally for musical signal processing, for automotive NVH (run up, impact strip and door closing) time-frequency analyses. Also, similarities and differences of the proposed tool when compared with Fourier and wavelet analyses are addressed.
Technical Paper

Adaptive Fuzzy Neural Networks With Global Clustering

2004-03-08
2004-01-0294
This paper proposes a novel algorithm. This algorithm is called Self-Organizing Fuzzy Neural Network (SOFNN). SOFNN revolutionizes how researchers apply control theories, image/signal processing on control systems and other applications. In general, SOFNN is an identification technique that automatically initiates, builds and fine-tunes the required network parameters. SOFNN evaluates required structures without predefined parameters or expressions regarding systems. SOFNN sets out to learn and configure a system's characteristics. Self-constructing and self-tuning features enable SOFNN to handle complex, non-linear, and time-varying systems with higher accuracy, making systems identification easier. SOFNN constructs and fine-tunes the system parameter through two phases. The two phases are the construction and the parameter-tuning phase. The two phases run concurrently allowing SOFNN to identify systems on-line.
Technical Paper

Optimum Gap Design And Durability Analysis of Catalytic Converter Assembly

2001-03-05
2001-01-0942
A method to predict gap distribution, can deformation and mounting force of catalytic converter during assembling and operation cycles has been developed using ABAQUS contact algorithm with user subroutine for material properties. Inherent in the methodology is the constitutive model for both vermiculite mat and wire mesh mounting materials, which is able to describe their nonlinear and thermal behaviors and shows good agreement with test results. A design optimization procedure is presented to achieve uniform gap design of can and substrate. The technology will enable engineers to generate robust converter can designs, substrate shape and stamping tools for minimum manufacturing failure rate and maximum durability performance once a mounting material is selected.
Technical Paper

Theoretical Evaluation of the Requirements of the 1999 Advanced Airbag SNPRM – Part One: Design Space Constraint Analysis

2001-03-05
2001-01-0165
In the 1999 Supplemental Notice for Proposed Rulemaking (SNPRM) for Advanced Airbags, the National Highway Traffic Safety Administration (NHTSA) sought comments on the maximum speed at which the high-speed, unbelted occupant test suite will be conducted, i.e., 48 kph vs. 40 kph. To help address this question, an analysis of constraints was performed via extensive mathematical modeling of a theoretical restraint system. First, math models (correlated with several existing physical tests) were used to predict the occupant responses associated with 336 different theoretical dual-stage driver airbag designs subjected to six specific Regulated and non-Regulated tests.
Technical Paper

Frictional and Acoustic Behavior of Automotive Interior Polymeric Material Pairs Under Environmental Conditions

2001-04-30
2001-01-1550
As automotive manufacturers continue to increase their use of thermoplastics for interior and exterior components, there is a likelihood of squeaks due to material contacts. To address this issue, Ford's Body Chassis NVH Squeak and Rattle Prevention Engineering Department has developed a tester that can measure friction, and any accompanying audible sound, as a function of sliding velocity, normal load, surface roughness, and environmental factors. The Ford team has been using the tester to address manufacturing plant issues and to develop a database of polymeric material pairings that will be used as a guide for current and future designs to eliminate potential noise concerns. Based upon the database, along with a physical property analysis of the various plastic (viscoelastic) materials used in the interior, we are in the process of developing an analytical model which will be a tool to predict frictional behavior.
Technical Paper

Development and Validation of a Computational Process for Pass-By Noise Simulation

2001-04-30
2001-01-1561
The Indirect Boundary Element Analysis is employed for developing a computational pass-by noise simulation capability. An inverse analysis algorithm is developed in order to generate the definition of the main noise sources in the numerical model. The individual source models are combined for developing a system model for pass-by noise simulation. The developed numerical techniques are validated through comparison between numerical results and test data for component level and system level analyses. Specifically, the source definition capability is validated by comparing the actual and the computationally reconstructed acoustic field for an engine intake manifold. The overall pass-by noise simulation capability is validated by computing the maximum overall sound pressure level for a vehicle under two separate driving conditions.
Technical Paper

Robust Analysis of Vehicle Suspension System Uncertainty

2001-04-30
2001-01-1582
The paper presents the systematic approaches toward robust stability analysis of H2/H∞ controlled active suspension systems. The computational algorithms for the structured singular value μ are the main features of the work with an emphasis on quantifying the effects of uncertainty of the systems. The representation of vehicle parameter uncertainties is given in detail. The robustness test is subsequently done based on a quarter vehicle model. The results have showed that the H∞ controller is the best one on both robust stability and robust performance.
Technical Paper

Development of a Finite Element Analysis Tool for Fixture Design Integrity Verification and Optimization

2002-03-04
2002-01-0132
Machining fixtures are used to locate and constrain a workpiece during a machining operation. To ensure that the workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped. Minimizing workpiece and fixture tooling deflections due to clamping and cutting forces in machining is critical to the machining accuracy. An ideal fixture design maximizes locating accuracy and workpiece stability, while minimizing displacements. The purpose of this research is to develop a method for modeling workpiece boundary conditions and applied loads during a machining process, analyze modular fixture tool contact area deformation and optimize support locations, using finite element analysis (FEA). The workpiece boundary conditions are defined by locators and clamps. The locators are placed in a 3-2-1 fixture configuration, constraining all degrees of freedom of the workpiece and are modeled using linear spring-gap elements.
Technical Paper

Silicon Microstructures: Merging Mechanics with Electronics

1992-02-01
920472
We review the advantages of silicon micromachining in manufacturing low-cost, high-volume, mechanical sensors. The characteristics of the technology are discussed and contrasted with those of typical milling operations. We describe the fabrication of simple mechanical elements to explain how micromachined parts can be manufactured in large numbers with a high degree of dimensional control. These parts are the key components of cost-effective, high performance pressure, flow, and acceleration sensors that are gradually penetrating the automotive market.
Technical Paper

Evolution of Automotive Test Equipment in the Service Bay

2011-04-12
2011-01-0750
Most people still remember the introduction of the IBM PC in 1981 and the first Microsoft Windows operating system in 1985. These were the pioneering technologies that started a revolution in automotive test equipment in the service bay. What was once a purely mechanical garage environment where information was published annually in large paper manuals has evolved into a highly technical computing environment. Today vehicle networks link onboard vehicle control systems with diagnostic systems and updated service information is published daily over the Internet. A lot has changed over the last twenty years, and manufacturers of diagnostic test equipment are learning to deal with the constantly evolving computing platforms and host operating systems. This paper traces the history of automotive diagnostic equipment at Ford Motor Company and shares some of the hard lessons learned from the early systems.
Technical Paper

Development of an Automatic Seat-Dimension Extraction System

2016-04-05
2016-01-1429
This paper reports on the development and validation of an automated seat-dimension extraction system that can efficiently and reliably measure SAE J2732 (2008) seat dimensions from 3D seat scan data. The automated dimension-extraction process consists of four phases: (1) import 3D seat scan data along with seat reference information such as H-point location, back and cushion angles, (2) calculate centerline and lateral cross-section lines on the imported 3D seat scan data, (3) identify landmarks on the centerline and cross-section lines based on the SAE J2732 definitions, and (4) measure seat-dimensions using the identified landmarks. To validate the automated seat measurements, manually measured dimensions in a computer-aided-design (CAD) environment and automatically extracted ones in the current system were compared in terms of mean discrepancy and intra- and inter-observer standard deviations (SD).
Technical Paper

Ratio-Metric Hesitation Fuel Detection and Compensation in Power Split Hybrid Electric Vehicles

2011-04-12
2011-01-0882
Power Split Hybrids are unique when compared to conventional powertrains from the perspective that the engine speed is directly controlled by the motor/generator at all times. Therefore, traditional methods of detecting variations in fuel volatility do not apply for Power Split Hybrid based configurations. In their place, the Ratio-metric Fuel Compensation (RFC) method has been developed for Power Split Hybrid generator configurations to detect and compensate for engine hesitations within milliseconds of the first injection event. Furthermore, test results have shown that in the presence of low volatility fuel, RFC provides robust starts at the ideal lean air fuel ratio required for PZEV emissions compliance.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
X